skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ji, Donghwan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 10, 2026
  2. This feature article summarizes recent advances in extrusion-based 3D printing of active materials in both non-living and living systems. 
    more » « less
  3. Abstract Achieving a simple yet sustainable printing technique with minimal instruments and energy remains challenging. Here, a facile and sustainable 3D printing technique is developed by utilizing a reversible salting-out effect. The salting-out effect induced by aqueous salt solutions lowers the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) solutions to below 10 °C. It enables the spontaneous and instant formation of physical crosslinks within PNIPAM chains at room temperature, thus allowing the PNIPAM solution to solidify upon contact with a salt solution. The PNIPAM solutions are extrudable through needles and can immediately solidify by salt ions, preserving printed structures, without rheological modifiers, chemical crosslinkers, and additional post-processing steps/equipment. The reversible physical crosslinking and de-crosslinking of the polymer through the salting-out effect demonstrate the recyclability of the polymeric ink. This printing approach extends to various PNIPAM-based composite solutions incorporating functional materials or other polymers, which offers great potential for developing water-soluble disposable electronic circuits, carriers for delivering small materials, and smart actuators. 
    more » « less